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I, INTRODUCTION 

The sequential simplex method was first proposed in 1962 by Spendley et al.’ as 
a development of EVolutionary Operation (EVOP) following consideration of how 
EVOP might be automated. The simplex procedure is a hill-climbing method whose 
direction of advance is dependent solely on the ranking of responses. The calculations 
and decisions that guide the procedure are rigorously specified yet almost trivially 
simple. The great advantages of the simplex procedure in the optimization of liquid 
chromatographic separations are that it is able to optimize many interdependent 
variables with no prior knowledge about the mode of separation or the complexity of 
the sample. Nor does it require any pre-conceived model of the retention behaviour of 
solutes and so does not require that the solutes be identified or recognized in individual 
separations. The method has the further advantages of permitting the introduction of 
new variables during the optimization process for the price of just one additional 
experiment per variable and one can also assess the progress of the optimization during 
rather than at the end of the experimental sequence. The procedure is therefore 
relatively efficient, multi-factor and has an empirical feedback which should permit 
rapid attainment of the experimental optimum. 

There are, however. significant disadvantages associated with simplex optimiza- 
tion. The ranking of responses requires that the quality of the chromatogram from 
each experiment be assessed: this is potentially a major stumbling block since it 
requires an optimization, or response, function which can direct the algorithm towards 
the “optimum”, yet it is extremely difficult either to know just how to describe what 
constitutes such an optimum or to express that knowledge in a way which is readily 
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describable by a simple mathematical equation. As it is a “blind” optimization 
method, the simplex procedure is generally unable to assess the quality of a located 
optimum. For example, peak elution orders may change in successive separations and 
the procedure would not be expected to decide unambiguously which elution order 
should be pursued to provide the global optimum. Thus several local optima may be 
located and the simplexes will move towards the most favourable local optimum rather 
than continue to search for the global optimum. It has also to be recognized that the 
simplex procedure can require relatively large numbers of experiments to locate 
optimum separation conditions. 

2. SIMPLEX PROCEDURE 

2.1. Selection ?f algorithm 
Although there are now many variants of the simplex procedure, they are all 

based on the basic procedure of Spendley et al.‘. A simplex is defined as a geometric 
figure having one more point (vertex) than the number of variables being optimized. 
Thus, for two variables a simplex is a triangle and for three variables the simplex is 
a tetrahedron. Although it is difficult to visualize a simplex for more than three 
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Fig. 1, Fixed-step size simplex optimization of two variables. Initial simplex is 123 and optimum region is at 
vertex 12. Reproduced from ref. 3 with permisson. 
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variables, the mathematics do not become significantly more complex and the 
procedure is easily handled by manual or digital computation. Fig. 1 shows 
a two-variable (dimension) simplex as it moves, with fixed step sizes, across a response 
surface. The optimization proceeds by rejection of the vertex which has the worst 
experimental response and reflecting its coordinates through the mid-point of the 
hyperplane. More detailed descriptions of the process have been published recently2,3. 

Unfortunately, this original, fixed-step size procedure suffers from several severe 
limitations. In particular, progress across the response surface is made at a constant 
rate because the step size is fixed; this fixed size also means that the optimum may not 
be precisely located since the simplexes will be forced (in two dimensions at least) to 
circle around it. Additionally, the fixed-step size simplex is prone to failure on 
a response surface ridge, in that it will become stranded and not make progress towards 
the optimum. These limitations have been largely overcome in the modified procedure 
of Nelder and Mead4. They introduced two new operations to the fixed-step size 
procedure, namely expansion and contraction. These operations allow the simplexes 
to expand and thus accelerate towards the optimum region when, having located it 
approximately, the simplexes contract and reduce the search region until the optimum 
is precisely located. Fig. 2 shows a variable-step size simplex on the same response 
surface as in Fig. 1. 
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Fig. 2. Variable-step size simplex. (From ref. 3.) 
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There are now further developments of the modified procedure, intended to 
increase speed and/or reliability. The basic modified procedure uses a fixed rate of 
expansion and contraction (usually 2 and 0.5, respectively), but the super-modified 
simplex (SMS)’ determines optimum values for the coefficients according to 
a parabolic fit through the worst vertex, the reflected vertex and the mid-point. The 
weighted centroid method (WCM)6 does not assume that the most rapid progress will 
be made by reflection through the centre of the hyperface and instead carries out 
a reflection biased towards the best remaining vertex. 

For the optimization of high-performance liquid chromatographic (HPLC) 
separations, the modified procedure is likely to be the algorithm of choice as it is able to 
locate the optimum more precisely and will usually be more efficient than the 
fixed-step size simplex. Additionally, as the simplex sizes change, it is not necessary to 
make initial judgements about how large a step should be taken. The response surfaces 
generated by most response functions are often irregular and the newer algorithms 
such as the weighted centroid method or the super-modified simplex may not offer 
significant advantages. They can be less efficient owing to the noise often encountered 
in chromatography and they do require more complex calculations. 

2.2. Response functions for simplex optimization 
Sequential simplex procedures rely on the results from previous experiments to 

define future experimentation. If those results are ambiguous it will be impossible to 
locate even a local optimum. The selection of an appropriate function and method of 
assessment of chromatographic quality is paramount for the successful utilization of 
a sequential simplex procedure. Further, the procedure is poor at dealing with other 
than smooth response surfaces. It is very difficult to climb a mountain “blind” if it is 
crisscrossed with crevasses. An optimization function needs to be defined that results 
in a smooth and unambiguous response surface across which the simplexes can move 
towards the global optimum, not being distracted by local optima. The optimization 
function must also represent, as a simple number, the chromatographer’s definition of 
an optimum separation, in itself a complex requirement since this assessment will 
almost certainly be a multi-criterion decision. Very few workers using simplex 
optimization, or indeed other separation optimization methods, explicitly define what 
the desired optimum is. For example, most practising chromatographers want 
a method that “works”. For one sample sensitivity may be critical, whereas for another 
throughput (speed) may be more important. Most criteria is use today are aimed at 
generating a chromatogram of more or less evenly spaced peaks within a predeter- 
mined time constraint. Infrequently considered are requirements such as robustness or 
cost. 

The functions used successfully to date for simplex optimization are, in general, 
based on sums of terms, usually reflecting resolution and analysis time and a selection 
are presented in Table 1. Ideally, there should be some indication of peak elution order 
changes in order that the global optimum can be searched for, but this has yet to be 
introduced directly into a response function. Not surprisingly, there is no ideal 
response function that meets all demands for sequential simplex optimizaton. Further 
discussions on optimization criteria can be to be found in refs. 7 and 8. It remains to be 
seen whether the newer response functions that have been designed for separations 
complicated by non-ideal peak shapes (e.g., a solvent peak or matrix peak)’ or when 
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TABLE 1 

CHROMATOGRAPHIC OPTIMIZATION FUNCTIONS USED WITH SEQUENTIAL SIMPLEX 
OPTIMIZATION 

Function” 

P ,“f = z 210gsi Binary mobile phase 11 

F ObJ = C[10(1.5-RJ]’ 

F ObJ = Z100e’-5~R8+(r,-t.)3 
CRF = xln(P’/P,) + a(t,,-t.) 

Ternary mobile phase 
Ternary mobile phase 
Gradient parameters and flow-rate 
Binary mobile phase 

12 
13 
14 
15 

16 
17.18 

CRF = Zln(fl/xJ ~ lOO(M-n) Concentration of organic modifier, pH 

CRF = CR, + n” - h 1 t,--t, 1 ~ c(to~rl) Composition of ternary mobile phase, 
temperature, flow-rate, pH 

CRF = Cr, + n ~ (r,-t,) Composition of ternary mobile phase 19 
(for t,--t” > 1) 

Y = p/M Gradient parameters (S/h) 20 

’ P!“r = informing power, Si = peak overlap, Ri (Pi) = actual resolution (peak separation) and Rd 

(P,,) = desired resolution (peak separation), t, = retention time of last peak and t, = desired retention time, 

lo = void time and tl = retention time of the first eluted peak and fand g = peak separation factors’; 
N = noise, A4 = number of peaks expected, n = number of peaks detected and p = number of peaks 
separated with a given resolution; CRF = chromatographic optimization function and Y = the extent of 
separation; the parameters a, h and c are selectable weightings. 

the objective is to separate a small number of components from a complex sample” 
can be used successfully in simplex optimization procedures. 

3. APPLICATIONS 

3.1. Isocrutic separations 
The first published use of the sequential simplex procedure in liquid chroma- 

tography appeared in 1975l*. This seminal example considered the ion-exchange 
separation of inorganic cations and, while demonstrating the value of the procedure, 
served to highlight the fundamental importance of deriving an appropriate optimiza- 
tion criterion. Not until 1977 did the first truly HPLC optimization example appear, 
when the normal-phase optimization of phospholipids was described2’. However, 
once again the difficulties associated with the selection of optimization criterion were 
recognized. In these two examples, the authors used the fixed-step size simplex, which 
worked well for two-variable optimization but, on the introduction of a third 
variable”, the authors met the additional problem of not being able to recognize when 
an optimum point on the response surface had been located causing the simplexes to 
“circle”. 

The simplex algorithm is conceptually simple and relatively easy to implement 
on a computer. The incentive for computer implementation of the procedure is small 
unless many variables are being handled, as the calculations required are relatively 
trivial. However, with the arrival in the late 1970s of commercially available 
microcomputer-controlled chromatographs came the opportunity to automate sepa- 
ration optimization. The first example of the fully automated use of the modified 
simplex algorithm for HPLC separation optimization was published in 1982 by 
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Berridgel’. A response function was developed with the aim of providing greater 
flexibility and meeting the needs of fully automated optimization: 

CRF = CRi + TZ“ - h / t,-tt, 1 -c(to-tl) 

It was demonstrated that binary and ternary mobile phase optimization could be 
achieved without operator intervention, for both reversed-phase and normal-phase22 
separations. In the normal-phase example, the difficulties of recognizing the location 
of the global optimum were appreciated and differentiation23, in the time domain, was 
used to indicate incomplete peak resolution and trigger a new optimization using new 
criteria or a new mobile phase component. 

These early examples were then expanded to consider the combined optimiza- 
tion of a ternary mobile phase, flow-rate and temperature24, and it was shown that pH, 
ion-pair concentration, flow-rate and temperature could be optimized automatically, 
in less than 40 experiments, to yield an acceptable separation of five- and six-com- 
ponent mixtures. These examples are of interest as the variables being considered are 
strongly interdependent. Trial-and-error and univariate optimization methods are 
particularly prone to failure when the variables are interdependent, but the simplex 
procedure is particularly suited to such situations. 

Forty experiments is still a large number to conduct, even if the system is under 
automatic control. The number of experiments can be reduced, and the chances of 
successfully locating the global optimum increased, if the search area is constrained. 
Constraining of the search area can be achieved in reversed-phase separations by 
carrying out an initial gradient separation in order to estimate the likely range of 
solvent strength required to achieve a desired analysis time. Berridge and Morrissey” 
showed that constraining the simplex search in this manner was indeed effective in 
both reducing the number of experiments required and increasing the likelihood of 
locating the global optimum. A microcomputer-controlled chromatograph was 
employed and the whole process, including the extrapolation from the gradient 
separation to initial isocratic conditions, was automated successfully. Computer 
software (in BASIC) for the gradient to isocratic calculation and for the simplex 
optimization itself has been published’. 

De Smet et a1.l5 used a similar idea to constrain the variable space during 
a simplex optimization. In developing a normal-phase separation for sulphonamides, 
an initial gradient separation was conducted to establish the desired solvent strength 
after which a small number of isocratic experiments were carried out in order to 
establish the most appropriate starting conditions for subsequent optimization. 

Two examples of the off-line use of the computer methods incorporating the 
simplex algorithm for isocratic separation optimization are the optimization of 
a quaternary mobile phase and flow-rate for alkaloids13, and a ternary mobile phase 
for the normal-phase separation of carotenoids . I2 In both instances the super- 
modified simplex procedure5 was used. Nickel and Demingi6 have reported the 
successful automated optimization of the separation of 19 PTH-amino acids. Wright et 
al.25 used automated implementation of the modified procedure as part of a much 
more complex investigation into the development and optimization of the separation 
of the antifungal drug tioconazole and its process-related impurities. A single-column 
anion separation optimization considered eluent concentration, pH and flow-rate26. 
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The software was written in C and is based on the algorithm of Nelder and Mead4 but 
with six modifications, including variable initial step size, irregular simplex shape, 
omission of massive contraction and function maximization only. 

Other examples of simplex procedures applied to HPLC separation include the 
optimization of a binary mobile phase and temperature for flavonesz7, a binary mobile 
phase for nitroaromatics and flavonesz8 and pH and percentage of methanol in the 
eluent for an ion-pair separation of naphthylamines2’. 

None of the examples cited above considered in detail two of the most frequently 
encountered problems that limit the usefulness of simplex procedures in HPLC 
optimization, namely the occurrence of elution order changes and the existence of local 
optima (which may arise from such elution order changes or may be due to coeluted 
peaks or non-eluted components). Indeed, there can be no truly optimized separation 
of an “unknown”, as the number of peaks will not be known. 

By using the extra information provided by multi-channel detection systems, 
and in the case of HPLC this will usually be a linear diode-array detector, Wright et 
~1.~’ showed that it is possible to estimate the number of peaks that are present in 
a mixture before a complete separation has been achieved, the extent of elution of the 
components can be checked and the elution orders examined to check for peak 
cross-overs. The number of peaks present in the original sample can be estimated 
through checking peak homogeneity for each chromatogram and updating the 
maximum number of possible peaks as more become discovered. 

While complex chemometric techniques have been used to establish peak 
homogeneity and/or deconvolute peaks into their component elution profiles31, for 
simply estimating peak numbers use can be made of on-board capability usually 
provided by the detector’s integration software to detect coelution of components. For 
example, where some separation between two components occurs, but without any 
observable resolution, the relative contributions of the two components will change 
throughout the elution profile. Where there is a sufficient spectral difference between 
the two components, both peak shape and retention time will be dependent on the 
detection wavelength. A sufficient difference in the shift of peak retention time with 
wavelength can provide an early indication of peak inhomogeneity and allow an 
updating of an estimate of the total number of peaks such that the search process can 
be continued as appropriate. 

Now that more information is known about the sample under investigation, it is 
possible to halt the optimization process on the basis of the closeness of the actual 
response to a maximum possible response, rather than the more usual method of 
halting optimization when the simplex size reduces below a predefined limit or the 
response fails to change significantly. 

To overcome some of the anomalies generated by using a multi-criterion CRFin 
simplex optimization, Wright et cd.30 simplified the CRF (eqn. 1) to 

CRF = CR; + n - (t, - t,) (tm - tn > 1) (2) 

The time constraint for the first eluted peak is deleted and that for the last eluted peak is 
considered only if the difference between its retention time and the target retention 
time is greater than 1 min. The term for the number of peaks (n) is not raised to a power 
to ensure that, when the time term is included, it has a significant influence on the CRF 
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value. The net effect of this CRF is to force the maximum number of peaks to be 
searched for with the last being positioned close to the target analysis time. Also, this 
CRF is designed to give a maximum value when the separation meets or exceeds 
a predetermined “development” requirement. If the maximum value (CRF,,,) is 
reached during the course of optimization, the procedure is halted on the basis of 
response. 

The algorithm is shown in Fig. 3. Note that the optimization procedure includes 
a check on the peak elution order. If different elution orders for the vertices are 
detected, the chromatographer can be warned of the existence of local optima or new 
optimization(s) can be started around each optimum. If all vertices indicate the same 
elution order, a greater degree of confidence can be attached to the result of the 
optimization. 

This procedure has been completely automated and was used for the optimiza- 
tion of three binary, isoeluotropic pseudo-components with a seven-component 
sample3’. The sample and mobile phase components had been chosen deliberately to 
challenge the optimization process. While a separation of all components was 
achieved, it represented a local optimum as the multiple peak cross-overs that occurred 
prevented the simplex procedure from reliably locating the global optimum. 

Simplex 

HP+LC 

I 

L,_J CRF 

CO”“t = 0 

NO 

Check 
elution 
order 2 End 

Fig. 3. Optimization algorithm for simplex procedure which uses extra information provided by 
multi-channel detection to estimate number of components present. (From ref. 19.) 
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3.2. Gradient separations 
Being a general optimization method, the simplex procedure can be used to 

optimize gradient separation parameters. Watson and Carr14 recognized the need to 
develop more advanced optimization criteria and developed a function incorporating 
both peak separation and time terms: 

CRF = Cln(Pi/Pd) + a(t,- t,) 

which was used for the succesful optimization of up to five variables, namely two 
solvents, gradient shape, gradient duration and mobile phase flow-rate. Computer 
assistance was used, the algorithm being the modified procedure and an optimum 
separation was achieved in twenty experiments. The same CRF was used by Fast et 
~1.“’ for univariate and multivariate optimization of the separation of steroid 
mixtures. In this instance the calculations were done manually, some adjustments to 
the results being required since the controlling microcomputer could not treat the 
gradient settings as a continuous variable; the simplex procedure assumes completely 
continuous variables but can handle discrete variables if they vary by uniform, 
constant steps. 

Berridge’ 7 was able to automate the optimization of multilinear gradient 
segments such that an adequate separation of four components was achieved in fifteen 
experiments. The algorithm and control procedures were essentially the same as those 
used for the optimization of isocratic separations; this shows the ability of the simplex 
procedure to act as a general, but ignorant, optimization method. 

Off-line simplex optimization of gradient separations was described by Sabate et 
~1.~~. The variables flow-rate, initial modifier content, rate of modifier change and 
initial isocratic time were examined to improve the separation between 2,4-dinitro- 
phenyl hydrazones of isolated carbonyl compounds in beer. The optimization 
program (OPEX) was described, but details of the simplex algorithm itself were not 
published. 

Another method for gradient optimization is to optimize the gradient steepness 
in terms of S/h (Solvent strength, h = constant; h = 0.2 for lo-,um and 0.1 for 5-pm 
packings). The experimental gradient steepness is calculated from Snyder’s linear 
solvent strength (LSS) equation: 

$9’ = h/St, 

where cp’ is the volume fraction change per unit time. This approach can be used to 
optimize multi-segment gradient elution profiles*‘. 

3.3. Other uses of simplex procedures in HPLC method development 
Tn a mathematical, rather than truly experimental, optimization investigation, 

Svoboda34 compared the use of simplex optimization with a grid search technique for 
the reversed-phase separation of twelve nucleotides. Organic modifier content, buffer 
concentration, pH, column length and separation time were considered. Retention as 
a function of these variables was described by a set of parabolic equations and then the 
factor space was searched by the two techniques. The simplex procedure was found to 
more effective with all five variables; when the number of variables was reduced. the 
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grid search became more efficient. The full algorithm of the modified simplex 
procedure employed was given; it includes a four-fold simplex size reduction in the case 
that an optimum is not located. 

Cela and P&-ez-Bustamante35 showed that simplex optimization was an effective 
procedure for the deconvolution of overlapping chromatographic peaks, assuming 
each peak to have a Gaussian profile. The speed and reliability of the modified 
procedure were compared with those of the weighted centroid method, the latter being 
found to be faster and less dependent on the initial simplex location. The algorithm was 
published and the procedure was implemented on a very simple personal computer, 
having only 16K RAM. 

Finally, method development and optimization are not solely concerned with the 
improvement of chromatographic parameters; sample treatment prior to chromato- 
graphy should also be considered. Halfpenny and Brown36 used the modified simplex 
procedure to establish the optimum values for pH and substrate concentration for 
a complex HPLC enzyme assay. 

4. CONCLUSIONS 

The simplex procedure is a versatile, general optimization method with wide 
applicability to HPLC separation optimization. No assumptions need be made about 
the sample under investigation, either its composition or behaviour. Interdependent 
variables can be optimized and it is easy to see how the optimization is proceeding and 
halt it on the basis of separation quality (response) or when a pre-determined simplex 
size has been reached. Further, it is not necessary to identify or track peaks in 
successive chromatograms. 

The simplex method is easy to use through manual calculations, but computer 
assistance in the calculations simplifies the process. Complex programs are not 
required; indeed, it is possible to use a simple spreadsheet37. The simplex procedure is 
also one of the easiest optimization procedures to link to the on-line optimization of 
HPLC separations through microcomputer-controlled chromatographs and at least 
two commercial manufacturers 38,39 implemented simplex procedures on their in- 
struments. 

There are however, drawbacks with the simplex procedure that limit its utility for 
HPLC separation optimization. Most notable is the problem of locating a local, rather 
than the global, optimum. This will inevitably be the case when elution orders change 
during the optimization, although methods to determine this are now available. Other 
disadvantages are the large number of experiments required (typically 15-30) and that, 
having conducted these experiments, little information is available about the 
robustness of the separation. As a technique for computer-aided method development 
in the future, it is likely to be superseded by the faster, more predictive methods which 
use regression methods or even structure-retention data to predict separation. 
However, it may still be useful to retain it as a potential method, useful in 
circumstances when the predictive methods may fail. Such an approach has been 
suggested by Fell et LZ~.~‘, who incorporated the modified simplex procedure as a part 
of an expert system for eluent optimization. 
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5. SUMMARY 

Since its inception in 1962, the sequential simplex procedure has found wide 
applicability for the optimization of a wide variety of liquid chromatography 
separations. This paper describes the basic agorithms and the chromatographic 
response functions necessary for the successful application of the procedure. 
Application of the simplex procedure to selectivity optimization, using manual and 
on-line computer systems, are given with particular consideration to the major 
limitation of the procedure, the difficulty of finding the global optimum. Both isocratic 
and gradient separations in normal, reversed-phase and ion chromatography are 
discussed. The use of the procedure for other chromatographic applications is 
considered. 
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